M2S Laboratory
Profile picture for user ozan_s@univ-rennes2.fr

Simon
Ozan

Email
simon.ozan [at] univ-rennes2.fr
Université Rennes 2
Research axis
Motion analysis, modelling and simulation

Research topics

My research focuses on the in-situ biomechanical analysis of the tennis serve. First, it aims to compare a markerless motion capture method with a marker-based optoelectronic reference system. The project involves the development of a method to reconstruct the trajectories of the racket and the ball using video data and computer vision techniques. In a second phase, this markerless tool will be used to investigate the effects of fatigue and score-related pressure on serve biomechanics during competitive match situations.

Journal articles

titre
Collision avoidance behaviours in chronic non-specific low back pain participants: A prospective cohort study
auteur
Agathe Bilhaut, Mathieu Ménard, Olivier Roze, Simon Ozan, Rebecca Crolan, Phillippe Carson-Jouzel, Armel Crétual, Anne-Hélène Olivier
article
Human Movement Science, 2025, 100, pp.103335-103335. ⟨10.1016/j.humov.2025.103335⟩
Accès au bibtex

BibTex
titre
Relationships Between Force-Time Curve Variables and Tennis Serve Performance in Competitive Tennis Players
auteur
Loïc Fourel, Pierre Touzard, Maxime Fadier, Louis Arles, Kaies Deghaies, Simon Ozan, Caroline Martin
article
Journal of Strength and Conditioning Research, 2024, 38 (9), pp.1667-1674. ⟨10.1519/jsc.0000000000004848⟩
Accès au texte intégral et bibtex

https://hal.science/hal-04699075/file/Fourel%20et%20al-2024-Relationships%20between%20force-time%20curve%20variables%20and%20tennis%20serve.pdf


BibTex

Conference papers

titre
Comparative assessment of markerless and marker-based motion capture for tennis serve biomechanical analysis
auteur
Simon Ozan, Loic Fourel, P Touzard, Kaies Deghaies, Caroline Martin, Richard Kulpa
article
29th Annual Congress of the European College of Sport Science, European College of Sport Science, Jul 2024, Glasgow (Ecosse), United Kingdom. pp.757-758
Accès au bibtex

BibTex
titre
Using machine learning to estimate lower-body joint moments from wearable sensors: a narrative review
auteur
Simon Ozan, Laetitia Fradet
article
47e Congrès de la Société de Biomécanique, Société de biomécanique, Oct 2022, Monastir, Tunisia. pp.S239 - S241
Accès au texte intégral et bibtex

https://hal.science/hal-05027517/file/ABSTRACTS%2047th%20congress%20of%20the%20Society%20of%20Biomechanics.pdf


BibTex

v-siteslabos-1